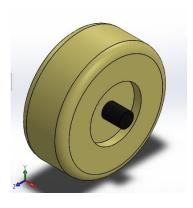
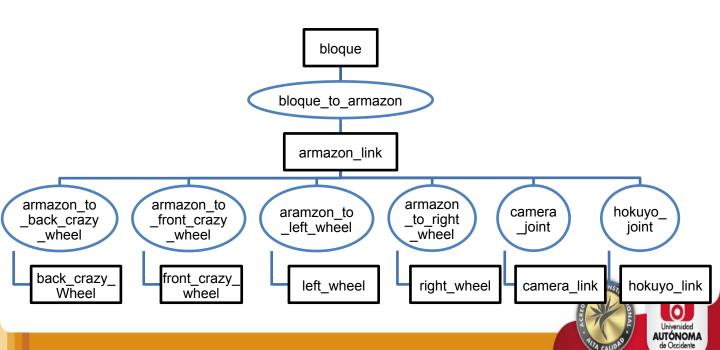


TURTLEBOT 2 Rviz and Gazebo simulation

Jose Miguel Correa
Ana Maria Pinto
Miguel Angel Saavedra


ROBOT PARTS

Chassis


Traction wheel

Unpowered wheel

Turtlebot's Tree Structure

Urdf structure for bloque to chassis joint


```
<!-- Chasis of the robot -->
 link name="armazon link">
   <visual>
      <origin rpv="0 0 0" xvz="0 0 0"/>
     <geometry>
        <mesh filename="package://proyecto/
meshes/armazon.STL"/>
      </geometry>
      <material name="black metal">
        <color rgba="0.1 0.1 0.1 1"/>
      </material>
   </visual>
   <inertial>
      <origin
        xvz="-0.00020681 -5.8482E-09 0.04814"
       rpy="0 0 0" />
      <mass
       value="9.9908" />
```

```
<inertia
        ixx="0.18286"
        ixv="-8.1444E-09"
        ixz="-0.00095615"
        ivy="0.18195"
        ivz="-4.5751E-09"
        izz="0.14187" />
    </inertial>
    <collision>
      <origin
        XVZ="0 0 0"
        rpy="0 0 0" />
      <geometry>
        <mesh
          filename="package://proyecto/meshes/
armazon.STL" />
      </geometry>
    </collision>
  </link>
```

Description of robot's chassis

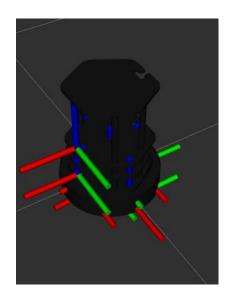

```
<!-- Gazebo reference of the left wheel -->
<gazebo reference="left_wheel">
        <mu1 value="1.0"/>
        <mu2 value="1.0"/>
        <kp value="10000000.0"/>
        <kd value="1.0"/>
        <fdir1 value="1 0 0"/>
        <material>Gazebo/Black</material>
        <turnGravityOff>false</turnGravityOff>
        </gazebo>
```

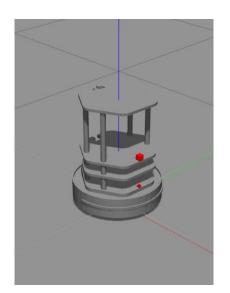
Gazebo reference for traction wheel and PID controller


```
<!-- Transmission is important to link the
joints and the controller Transmission for the
left wheel-->
 <transmission
name="armazon_to_left_wheel trans">
    <type>transmission interface/
SimpleTransmission</type>
   <joint name="armazon_to left wheel"/>
    <actuator
name="armazon_to_left_wheel_motor">
      <hardwareInterface>EffortJointInterface</
hardwareInterface>
      <mechanicalReduction>1</
mechanical Reduction>
   </actuator>
 </transmission>
```

Gazebo reference for transmission and motor of left wheel

Turtlebot's Launch


```
<launch>
        <!-- Including Empty world files from
gazebo -->
        <include file="$(find gazebo ros)/</pre>
launch/empty world.launch" />
        <arg name="model" />
        <!-- Parsing xacro and setting
robot description parameter -->
        <param name="robot description"</pre>
textfile="$(find proyecto)/urdf/proyecto.urdf" /
        <!-- Setting gui parameter to true for
display joint slider -->
        <param name="use qui" value="true"/>
        <!-- Starting Joint state publisher
node which will publish the joint values -->
        <node name="joint state publisher"
pkg="joint state publisher"
                                                  </launch>
type="joint state publisher" />
```


```
<!-- Starting robot state publish which
will publish tf -->
        <node name="robot state publisher"
pkg="robot state publisher"
type="robot state publisher"/>
        <!-- Launch visualization in Gazebo -->
        <node name="spawn model"
pkg="gazebo ros" type="spawn model" args="-file
$(find proyecto)/urdf/proyecto.urdf -urdf -
model proyecto" output="screen" />
    <param name="publish frequency"</pre>
type="double" value="50.0" />
        <!-- Launch visualization in rviz -->
        <node name="rviz" pkg="rviz"
type="rviz" args="-d $(find provecto)/
urdf.rviz" required="true" />
```

Launch file of the turtlebot

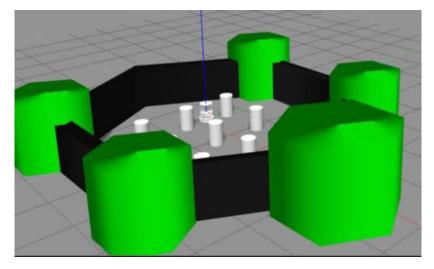
Robot models

Rviz and Gazebo Simulation

Mapping using SLAM

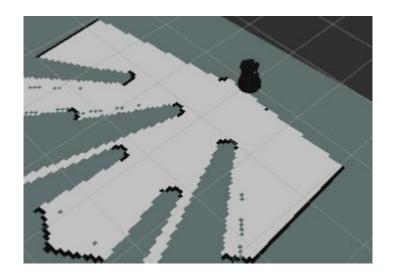
gmapping.launch parameters

Mapping using SLAM


```
<node pkg="move_base" type="move_base" respawn="false"</pre>
name="move base" output="screen">
    <rosparam file="$(find proyecto)/param/costmap_common_params.yaml"</pre>
command="load" ns="global costmap" />
    <rosparam file="$(find proyecto)/param/costmap common params.yaml"</pre>
command="load" ns="local costmap" />
    <rosparam file="$(find proyecto)/param/local costmap params.yaml"</pre>
command="load" />
    <rosparam file="$(find proyecto)/param/global_costmap_params.yaml"</pre>
command="load" />
    <rosparam file="$(find proyecto)/param/
base_local_planner_params.yaml" command="load" />
    <rosparam file="$(find proyecto)/param/
dwa local planner params.yaml" command="load" />
    <rosparam file="$(find proyecto)/param/move base params.yaml"</pre>
command="load" />
```

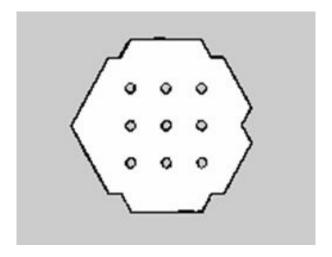
Local and global costmap

Turtlebot's environment



Environment to map.

Mapping using SLAM



Mapping process

Mapping using SLAM

Saved map

Autonomous Localization using AMCL

```
<!-- Map server -->
 <arg name="map file" default="$(find proyecto)/maps/test.yaml"/>
 <node name="nap server" pkg="nap server" type="nap server"
rgs="S(arg map file)" />
 <arg name="initial pose x" default="0.0"/> <!-- Use 17.0 for</pre>
illow's map in simulation -->
 <arg name="initial pose y" default="0.0"/> <!-- Use 17.0 for
rillow's map in simulation -->
 <arg name="initial pose a" default="8.8"/>
 <include file="S(find proyecto)/launch/includes/amcl.launch.xml">
   <arg name="initial pose x" value="0"/>
   <arg name="initial pose y" value="0"/>
   <arg name="initial pose a" value="0"/>
100
   <arg name="initial_pose_x" value="S(arg initial_pose_x)"/>
   <arg name="initial pose y" value="$(arg initial pose y)"/>
   <arg name="initial pose a" value="$(arg initial pose a)"/>
 </include>
 <include file="S(find proyecto)/launch/includes/</pre>
love base, launch, xml"/>
```

```
<arg name="use map topic" default="false"/>
<arg name="scan topic"
                            default="scan"/>
card name="initial pose x" default="0.0"/>
<arg name="initial pose v" default="0.0"/>
carg name="initial pose a" default="0.0"/>
<node pkg="ancl" type="ancl" name="ancl">
  <param name="use map topic"</pre>
                                            value="$(arg
e map topic)"/>
  <!-- Publish scans from best pose at a max of 10 Hz -->
 <param name="odom model type"
                                             value="diff"/>
 <param name="odom alpha5"
                                             value="0.1"/>
 <param name="gut publish rate"</pre>
                                            value="10.0"/>
 <param name="laser max beams"</pre>
                                               value="60"/>
  <param name="laser max range"</pre>
                                            value="12.0"/>
 <param name="min particles"</pre>
                                            value="500"/>
  <param name="max particles"</pre>
                                            value="2000"/>
  <param name="kld err"
                                            value="0.85"/>
 <param name="kld z"
                                            value="0.99"/>
                                            value="0.2"/>
  <param name="odom alpha1"
  <paran name="odom alpha2"</pre>
                                            value="8.2"/>
 <!-- translation std dev, m -->
  <param name="odom alpha3"
                                             value="0.2"/>
  <param name="odom alpha4"
                                             value="0.2"/>
  <param name="laser z hit"</pre>
                                             value="0.5"/>
```

amcl.launch file

Autonomous Localization using AMCL

```
# Trajectory Scoring Parameters
path_distance_bias: 0.8  # 32.0 -
goal_distance_bias: 0.6  # 24.0
occdist_scale: 0.5  # 0.01 -
forward_point_distance: 0.325 # 0.325
stop_time_buffer: 0.2  # 0.2
scaling_speed: 0.25  # 0.25
max_scaling_factor: 0.2  # 0.2
```

Trajectory parameters

Autonomous Localization using AMCL

Plugins added in Rviz & Autonomous navigation in Rviz

Jetson TK1

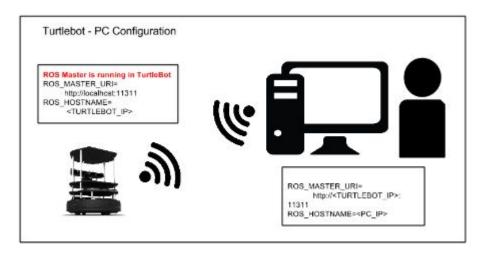
The Jetson TK1 nvidia's board is used as the cpu of the turtlebot.

Jetson's requirements for the turtlebot

- 1. L4T (Linux for Tegra) 21.3
- 2. GRINCH KERNEL 21.3.4
- 3. ROS Indigo
- 4. Turtlebot and kobuki ROS dependencies

Jetson's configuration

- Download and install the las version of Jetpack TK1 (21.3).
- 2. Reinstall the system with Ubuntu 14.04.
- Update repositories
 \$ sudo apt-get update y \$sudo apt-get upgrade.
- Install the custom kernel, in this case the *grinch kernel* \$ sudo apt-get install git
 \$ git clone https://github.com/jetsonhacks/installGrinch.git



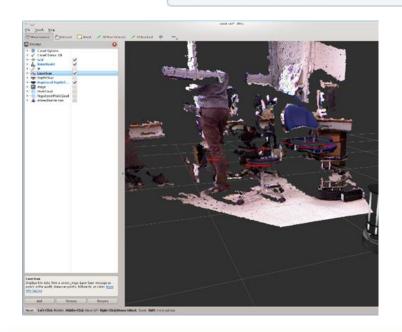
Jetson's configuration

- Follow the tutorial on https://github.com/jetsonhacks/postFlash to improve the efficiency of the card
- 6. Install ROS Indigo \$ git clone https://github.com/jetsonhacks/installROS.git
- 7. Install essentials\$ sudo apt-get install build-essential
- 8. Install g++\$ sudo apt-get install g++

Network configuration

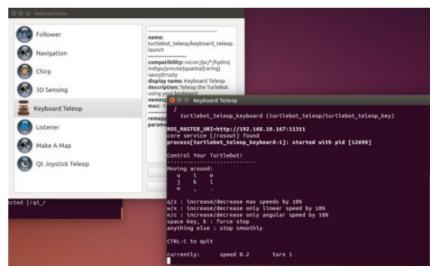
Network configuration between the Host PC and the turtlebot, after this, it is necessary to do the deb installation and the source installation respectively

Configuration of turtlebot's bringup



This step is necessary to bring up or start the turtlebot software and get connected to the turtlebot from the host PC

Enable 3D visualization


roslaunch turtlebot bringup 3dsensor.launch

Most of the visualization launchers can be found in the

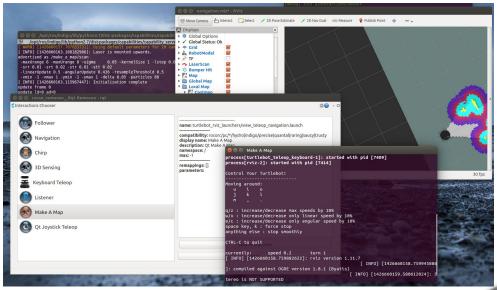
turtlebot_rviz_launchers package. This is useful to allow the call of launchers to visualize the turtle and its data streams.

Keyboard_Teleop

roslaunch turtlebot_teleop keyboard_teleop.launch --screen

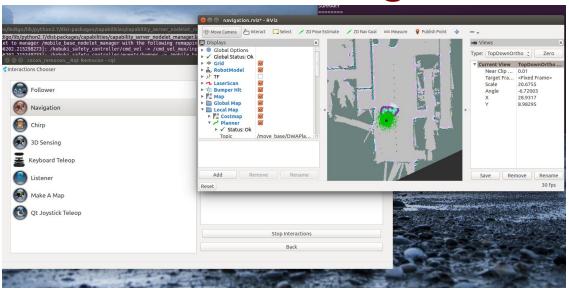
Gmapping

· Bring up the robot


roslaunch turtlebot_bringup minimal.launch

· Run the gmapping demo app

roslaunch turtlebot_navigation gmapping_demo.launch



"Make a map"

Autonomous navigation

TurtleBot 2 Autonomous Navigation and Obstacle-avoidance

https://www.youtube.com/watch?v=0eDFSXPnh2l

